The Nahm equations, finite-gap potentials and Lame functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 202679
(http://iopscience.iop.org/0305-4470/20/10/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on $31 / 05 / 2010$ at 10:21

Please note that terms and conditions apply.

The Nahm equations, finite-gap potentials and Lamé functions

R S Ward
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK

Received 19 November 1986

Abstract

It is shown that the Lamé equation, which is the simplest example of a finite-gap Hill's equation, can be written in terms of the composition of two first-order matrix operators, the coefficients of which satisfy Nahm's equation. The characteristic eigenvalues of the Lame equation emerge from the representation theory of the Lie algebra so(3). A special case is that of reflectionless potentials and their associated bound states.

This paper is concerned with doubly periodic solutions of the Lamé equation

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}}-n(n+1) k^{2} \operatorname{sn}^{2} z+h\right) f=0 \tag{1}
\end{equation*}
$$

where k is the modulus of the elliptic function sn z, and where n and h are constants. If n is an integer, then the operator appearing in (1) is an example of a 'finite-gap' operator, associated with solutions of the periodic Korteweg-de Vries equation (Novikov et al 1984).

The basic facts about doubly periodic solutions of (1) are as follows (see Ince 1941, Erdélyi 1955, Arscott 1964). If one wants a solution with real period $2 K$ or $4 K$, and imaginary period $2 \mathrm{i} K^{\prime}$ or $4 \mathrm{i} K^{\prime}$, then n must be an integer (without loss of generality, a positive integer), and h must equal one of a set of $2 n+1$ characteristic values. These solutions are polynomials ('Lamé polynomials') of degree n in the elliptic functions $\operatorname{sn} z$, $\mathrm{cn} z$, dn z. There are also doubly periodic solutions with periods $8 K$ and $8 \mathrm{i} K^{\prime}$, if (and only if) n is half an odd integer, and h equals one of a set of $n+\frac{1}{2}$ characteristic values. These 'algebraic Lamé functions' have branch points and are not meromorphic.

We shall see that, for these special values of n and h, the second-order operator in (1) may be factorised into a product of two first-order matrix operators (Dirac operators), the coefficients of which satisfy the so(3) Nahm equations. It will turn out that the characteristic values of n and h are associated with representations of the Lie algebra so(3).

The Nahm equations involve three $N \times N$ matrices $T_{1}(z), T_{2}(z), T_{3}(z)$, with entries that are, in general, complex valued. One can also think in terms of a single $N \times N$ matrix $T(z)=T_{j}(z) \sigma_{j}$, taking values in the imaginary quaternions. We think of imaginary quaternions as being generated by the three Pauli matrices σ_{j}, satisfying

$$
\begin{equation*}
\sigma_{j} \sigma_{k}=\delta_{j k}+\mathrm{i} \varepsilon_{j k l} \sigma_{t} \tag{2}
\end{equation*}
$$

(The indices j, k, l, \ldots range over $1,2,3$ and the Einstein summation convention is used throughout.)

Let Δ and $\tilde{\Delta}$ denote the first-order differential operators

$$
\begin{aligned}
& \Delta=\frac{\mathrm{d}}{\mathrm{~d} z}+T(z) \\
& \tilde{\Delta}=\frac{\mathrm{d}}{\mathrm{~d} z}-T(z)
\end{aligned}
$$

and consider their composition $\tilde{\Delta} \Delta$. Using (2), we obtain

$$
\tilde{\Delta} \Delta=\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}}-T_{j} T_{j}\right)+\left(\frac{\mathrm{d} T_{l}}{\mathrm{~d} z}-\mathrm{i} \varepsilon_{j k l} T_{j} T_{k}\right) \sigma_{l}
$$

Thus the operator $\tilde{\Delta} \Delta$ is 'real' (i.e. the part containing the imaginary quaternions σ_{l} vanishes) if and only if

$$
\begin{equation*}
T_{l}^{\prime}=\mathrm{i} \varepsilon_{j k l} T_{j} T_{k} \tag{3}
\end{equation*}
$$

where the prime denotes $\mathrm{d} / \mathrm{d} z$. These are the Nahm equations.
Note that, in general, $T_{j} T_{j}$ is a complex-valued $N \times N$ matrix of functions of z (it is 'real' only in the sense that it does not involve the σ_{j}).

Equations (3) arose in Nahm's construction of non-Abelian monopole solutions; the operator Δ, and the fact that $\tilde{\Delta} \Delta$ is real, are crucial to this construction. For more details, the reader is referred to Nahm $(1982,1986)$ and Hitchin (1983).

The Nahm equations (3) may, in view of the fact that $\varepsilon_{j k l}$ is totally antisymmetric, be rewritten as

$$
\begin{equation*}
T_{l}^{\prime}=\frac{1}{2} 1 \varepsilon_{j k l}\left[T_{j}, T_{k}\right] \tag{4}
\end{equation*}
$$

where [,] denotes the matrix commutator. So it makes sense to think of (4) in Lie algebraic terms, and to regard T_{1}, T_{2} and T_{3} as belonging to an N-dimensional irreducible representation of some Lie algebra. To begin with, let us take this Lie algebra to be the simplest (non-trivial) one, namely so(3).

An N-dimensional representation of so(3) is generated by three $N \times N$ matrices t_{j} satisfying

$$
\begin{equation*}
\left[t_{j}, t_{k}\right]=-\mathrm{i} \varepsilon_{j k l} t_{l} . \tag{5}
\end{equation*}
$$

So we take each of T_{1}, T_{2} and T_{3} to be a linear combination of the t_{j} (with coefficients which depend on z). The general solution of (4) is then

$$
\begin{align*}
& T_{1}=-t_{1} k \operatorname{sn} z \\
& T_{2}=t_{2} \mathrm{i} k \mathrm{cn} z \tag{6}\\
& T_{3}=t_{3} \mathrm{i} \mathrm{dn} z
\end{align*}
$$

modulo certain symmetry transformations. (First, we omit the trivial solution in which the T_{j} all commute and are constant. Second, we use the fact that the so(3) Nahm equations are invariant under the action of two copies of the group $\mathrm{SO}(3)$, the first acting by $T_{j} \rightarrow \Lambda_{j}{ }^{k} T_{k}$ with $\Lambda \in S O(3)$ and the second acting on so(3) by the adjoint action. Finally, we use the affine freedom $z \mapsto \alpha z+\beta$.)

From (6) we obtain

$$
\begin{align*}
T_{j} T_{j} & =t_{1}^{2} k^{2} \operatorname{sn}^{2} z-t_{2}^{2} k^{2} \mathrm{cn}^{2} z-t_{3}^{2} \mathrm{dn}^{2} z \\
& =n(n+1) k^{2} \operatorname{sn}^{2} z-\left(t_{3}^{2}+k^{2} t_{2}^{2}\right) \tag{7}
\end{align*}
$$

where $2 n=N-1$ is the highest weight of the representation, so that $t_{j} t_{j}$ equals $n(n+1)$ times the identity $N \times N$ matrix. So the operator $\tilde{\Delta} \Delta$ is

$$
\begin{equation*}
\tilde{\Delta} \Delta=\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}}-n(n+1) k^{2} \operatorname{sn}^{2} z+M \tag{8}
\end{equation*}
$$

where $M=M(k)$ is a constant matrix (it depends on k, but not on z):

$$
\begin{equation*}
M(k)=t_{3}^{2}+k^{2} t_{2}^{2} \tag{9}
\end{equation*}
$$

Thus the equation $\tilde{\Delta} \Delta f=0$ consists of N copies of Lamés equation (1), with values of h equal to the eigenvalues of $M(k)$. The doubly periodic solutions we are after are, in fact, solutions of the Dirac equation $\Delta F=0$.

Note that the matrix M depends on the choice of t_{3} and t_{2}; however, its spectrum depends only on the numbers n and k.

Consider first the simplest integer representation, corresponding to $n=1$. The t_{j} are given by

$$
t_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad t_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
0 & \mathrm{i} & 0 \\
-\mathrm{i} & 0 & \mathrm{i} \\
0 & -\mathrm{i} & 0
\end{array}\right] \quad t_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

The matrix $\boldsymbol{M}(k)$ is

$$
M(k)=\left[\begin{array}{ccc}
1+\frac{1}{2} k^{2} & 0 & -\frac{1}{2} k^{2} \tag{10}\\
0 & k^{2} & 0 \\
-\frac{1}{2} k^{2} & 0 & 1+\frac{1}{2} k^{2}
\end{array}\right]
$$

the eigenvalues of which are $1, k^{2}, 1+k^{2}$. The matrix T appearing in the operator Δ involves the tensor product of the t_{j} and the Pauli matrices σ_{j}, and is therefore a 6×6 matrix. It acts on a 6 -vector F. Let us write F as a pair of 3 -vectors ψ and φ. Then $\Delta F=0$ becomes

$$
\begin{align*}
& \psi^{\prime}+T_{3} \psi+\left(T_{1}-\mathrm{i} T_{2}\right) \varphi=0 \\
& \varphi^{\prime}-T_{3} \varphi+\left(T_{1}+\mathrm{i} T_{2}\right) \psi=0 \tag{11}
\end{align*}
$$

Let $\left(\psi_{1}, \psi_{0}, \psi_{-1}\right)$ denote the components of ψ, and similarly for φ. If we use the expressions (6) for T_{j} then (11) becomes

$$
\begin{align*}
& \sqrt{2} \psi_{0}^{\prime}=\mathrm{i} k \exp (-\mathrm{i} \text { am } z) \varphi_{1}-\mathrm{i} k \exp (\mathrm{i} \text { am } z) \varphi_{-1} \\
& \sqrt{2} \varphi_{1}^{\prime}=\mathrm{i} \sqrt{2}(\operatorname{dn} z) \varphi_{1}+\mathrm{i} k \exp (-\mathrm{i} \text { am } z) \psi_{0} \tag{12}\\
& \sqrt{2} \varphi_{-1}^{\prime}=-\mathrm{i} \sqrt{2}(\operatorname{dn} z) \varphi_{-1}-\mathrm{i} k \exp (\mathrm{i} \text { am } z) \psi_{0}
\end{align*}
$$

together with the same equations with φ_{1} replaced by ψ_{-1}, ψ_{0} by φ_{0}, and φ_{-1} by ψ_{1} (Here $\exp (\mathrm{i} \mathrm{am} z)=\mathrm{cn} z+\mathrm{i} \operatorname{si} z$.) So the 6 -vector equation $\Delta F=0$ decouples into two identical sets of three equations each.

The general solution of equations (12) depends on three parameters and involves transcendental Lamé functions. But it is easy to exhibit a doubly periodic solution:
$\psi_{0}=\operatorname{dn} z \quad \varphi_{1}=-\frac{k}{2 \sqrt{2}} \exp (-\mathrm{i} \mathrm{am} z) \quad \varphi_{-1}=-\frac{k}{2 \sqrt{2}} \exp (\mathrm{i} \mathrm{am} z)$.
These functions correspond to the $n=1$ Lamé polynomials. Indeed, the 3-vector $f=$ column $\left(\varphi_{1}, \psi_{0}, \varphi_{-1}\right)$ is clearly a solution of

$$
\begin{equation*}
f^{\prime \prime}-n(n+1) k^{2}\left(\operatorname{sn}^{2} z\right) f+M f=0 \tag{14}
\end{equation*}
$$

and if we diagonalise the matrix M, then the components of the transformed f will be the three $n=1$ Lamé polynomials, corresponding to the three characteristic values $h=1, k^{2}, 1+k^{2}$.

It is easy to extend the above to $n=2,3,4, \ldots$ The equations $\Delta F=0$ decouple into two copies of a set of $N=2 n+1$ equations and this set has a solution of the form

$$
f=\operatorname{column}\left(\varphi_{n}, \psi_{n-1}, \varphi_{n-2}, \ldots, \psi_{1-n}, \varphi_{-n}\right)
$$

where

$$
\varphi_{k}=\alpha_{k} \exp (-\mathrm{i} k \operatorname{am} z) \quad \psi_{k}=\alpha_{k} \operatorname{dn} z \exp (-\mathrm{i} k \operatorname{am} z) .
$$

Here $\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{-n}$ are non-zero constants: it is straightforward to compute their values, which are determined uniquely up to an overall constant of proportionality, in terms of the entries in the matrices t_{j} generating the N-dimensional representation.

So as before, f satisfies (14). The N components of f are clearly linearly independent over \mathbb{C}, so that, after diagonalising M, we obtain N independent solutions of the Lamé equation, one for each eigenvalue h of M. One knows (Ince 1941) that no two Lamé polynomials can belong to the same value of h; so the eigenvalues of M are all distinct and give all of the N characteristic values h.

The case of half-integer (i.e. even-dimensional) representations of so(3) is slightly different. For example, in the case $n=\frac{1}{2}$, the matrix $M(k)$ has two equal eigenvalues $\frac{1}{4}\left(1+k^{2}\right)$ and the general solution of $\Delta F=0$ can be written down explicitly: each component of F is a linear combination of the two functions $(\mathrm{dn} z+\mathrm{cn} z)^{1 / 2}$ and $(\mathrm{dn} z-\mathrm{cn} z)^{1 / 2}$. These are the two algebraic Lamé functions corresponding to $n=\frac{1}{2}$.

Let us examine what happens in the limit $k=0$. If we first make the affine transformation $z \mapsto \mathrm{i} z+K+\mathrm{i} K^{\prime}$ and then let k tend to zero, the equation $\tilde{\Delta} \Delta f=0$ becomes

$$
\begin{equation*}
f^{\prime \prime}+\left[n(n+1) \operatorname{sech}^{2} z-t_{3}^{2}\right] f=0 . \tag{15}
\end{equation*}
$$

The potential appearing in (15) is, of course, well known as a reflectionless potential, provided n is an integer (Lamb 1980, § 2.5). The non-zero eigenvalues of t_{3}^{2} correspond to the bound states of the Schrödinger equation (15). The solution (13) of $\Delta F=0$ becomes

$$
\left(\varphi_{1}, \psi_{0}, \varphi_{-1}\right)=\left(\mathrm{i} 2^{-1 / 2} \operatorname{sech} z,-\tanh z, 0\right) .
$$

So φ_{1} is the normalisable solution of (15) corresponding to the eigenvalue 1 , whereas ψ_{0}, corresponding to the eigenvalue 0 , is not normalisable.

Finally, one can ask whether it is possible to generalise the above observations, so as to obtain more general finite-gap and reflectionless potentials, together with their associated eigenvalues. The first guess would be to use a Lie algebra g other than so(3), so that T_{j} takes values in a representation of g . One knows that, for any g , the $\mathrm{g}-\mathrm{Nahm}$ equations are completely integrable and can be solved in terms of Abelian functions and finite-gap potentials can also be expressed in terms of Abelian functions, so at first sight it seems promising. However, it does not work, as the following argument shows.

Let $G_{\alpha}, \alpha=1,2, \ldots, m$, be a basis for g. So we can write $T_{j}=T_{j}^{\alpha}(z) G_{\alpha}$. We want

$$
\begin{equation*}
T_{j}^{\alpha} T_{j}^{\beta}=\xi(z) g^{\alpha \beta}+M^{\alpha \beta} \tag{16}
\end{equation*}
$$

where $g^{\alpha \beta}$ is the Killing metric and $M^{\alpha \beta}$ is constant. For then we would have

$$
T_{j} T_{j}=\xi(z) C+M
$$

where M is a constant matrix and C (the Casimir element) is a scalar (compare equation (7)). However, the left-hand side of (16), thought of as an $m \times m$ matrix, has rank $\leqslant 3$. So the right-hand side cannot have the required form, unless either ξ is a constant or $m=3$.

It remains a possibility that some generalisation of the Nahm-Dirac operator Δ could provide the general finite-gap potentials and their eigenvalues. This is worth investigating further.

Acknowledgment

I am indebted to E F Corrigan for first bringing to my attention that the reflectionless potential arises from a solution of Nahm's equations.

References

Arscott F M 1964 Periodic Differential Equations (Oxford: Pergamon)
Erdélyi A 1955 Higher Transcendental Functions (Bateman Project) vol 3 (New York: McGraw-Hill)
Hitchin N J 1983 Commun. Math. Phys. 89145
Ince E L 1941 Proc. R. Soc. Edinburgh 60 47, 83
Lamb G L 1980 Elements of Soliton Theory (New York: Wiley)
Nahm W 1982 Group Theoretical Methods in Physics (Lecture Notes in Phys. 180) ed M Serdaroglu and E Inonu (Berlin: Springer) p 456

- 1986 Non-Linear Equations in Classical and Quantum Field Theory (Lecture Notes in Phys. 226) ed N Sanchez (Berlin: Springer)
Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E 1984 Theory of Solitons (New York: Consultants Bureau)

