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J .  Phys. A: Math. Gen. 20 (1987) 2679-2683. Printed in the U K  

The Nahm equations, finite-gap potentials and Lame functions 

R S Ward 
Department of Mathematical Sciences, University of Durham, Durham D H l  3LE, UK 

Received 19 November 1986 

Abstract. It  is shown that the Lame equation, which is the simplest example of a finite-gap 
Hill’s equation, can be written in terms of the composition of two first-order matrix 
operators, the coefficients of which satisfy Nahm’s equation. The characteristic eigenvalues 
of the Lame equation emerge from the representation theory of the Lie algebra so(3). A 
special case is that of reflectionless potentials and their associated bound states. 

This paper is concerned with doubly periodic solutions of the Lam6 equation 

n(  n + 1) k 2  sn2 z + h 

where k is the modulus of the elliptic function sn z, and where n and h are constants. 
If n is an integer, then the operator appearing in (1) is an example of a ‘finite-gap’ 
operator, associated with solutions of the periodic Korteweg-de Vries equation 
(Novikov et a1 1984). 

The basic facts about doubly periodic solutions of (1) are as follows (see Ince 1941, 
ErdClyi 1955, Arscott 1964). If one wants a solution with real period 2K or 4K, and 
imaginary period 2iK’ or 4iK‘, then n must be an integer (without loss of generality, 
a positive integer), and h must equal one of a set of 2n + 1 characteristic values. These 
solutions are polynomials (‘Lam6 polynomials’) of degree n in the elliptic functions 
sn z, cn z, dn z. There are also doubly periodic solutions with periods 8K and 8iK’, 
if (and only if) n is half an odd integer, and h equals one of a set of n +; characteristic 
values. These ‘algebraic Lam6 functions’ have branch points and are not meromorphic. 

We shall see that, for these special values of n and h, the second-order operator 
in (1) may be factorised into a product of two first-order matrix operators (Dirac 
operators), the coefficients of which satisfy the so(3) Nahm equations. It will turn out 
that the characteristic values of n and h are associated with representations of the Lie 
algebra so(3). 

The Nahm equations involve three N x N matrices T , ( z ) ,  T 2 ( z ) ,  T 3 ( z ) ,  with entries 
that are, in general, complex valued. One can also think in terms of a single N x N 
matrix T ( z )  = T,(z )uJ ,  taking values in the imaginary quaternions. We think of 
imaginary quaternions as being generated by the three Pauli matrices U), satisfying 

“ J u k  = SI, + iElklul.  ( 2 )  

(The indices j ,  k, I , .  . . range over 1, 2, 3 and the Einstein summation convention is 
used throughout.) 
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Let A and & denote the first-order differential operators 
d 

dz 
A = - +  T(z) 

- d  A = - -  T(z) 
dz 

and consider their composition &A. Using (2), we obtain 

Thus the operator AA is ‘real’ (i.e. the part containing the imaginary quaternions uI 
vanishes) if and only if 

where the prime denotes d/dz. These are the Nahm equations. 
Note that, in general, T,T, is a complex-valued N x N matrix of functions of z (i t  

is ‘real’ only in the sense that it does not involve the a,). 
Equations (3) arose in Nahm’s construction of non-Abelian monopole solutions; 

the operator A, and the fact that &A is real, are crucial to this construction. For more 
details, the reader is referred to Nahm (1982, 1986) and Hitchin (1983). 

The Nahm equations (3) may, in view of the fact that &,k\ is totally antisymmetric, 
be rewritten as 

where [,] denotes the matrix commutator. So it makes sense to think of (4) in Lie 
algebraic terms, and to regard TI ,  T2 and T3 as belonging to an N-dimensional 
irreducible representation of some Lie algebra. To begin with, let us take this Lie 
algebra to be the simplest (non-trivial) one, namely so(3). 

An N-dimensional representation of so(3) is generated by three N x N matrices f, 
satisfying 

So we take each of TI, T2 and T3 to be a linear combination of the r, (with coefficients 
which depend on 2 ) .  The general solution of (4) is then 

Ti = iF,k/qTk (3) 

T ;  = f i&,dT, T k l  (4) 

[i,, f k l  = - i&jkl t l*  ( 5 )  

TI = - r ,k  sn z 
T2 = t,i k cn z 
T3 = f,i dn z 

(6) 

modulo certain symmetry transformations. (First, we omit the trivial solution in which 
the T, all commute and are constant. Second, we use the fact that the SO(3) Nahm 
equations are invariant under the action of two copies of the group S0(3 ) ,  the first 
acting by T,-AJkTk with A E S O ( ~ )  and the second acting on so(3) by the adjoint 
action. Finally, we use the affine freedom z ~ a z + p . )  

From (6) we obtain 
T,T, = t:k2 sn2 z - r:k2 cn2 z - t :  dn2 z 

= n(n + l ) k 2  sn2 z - ( f : +  k2r:)  ( 7 )  
where 2n = N - 1 is the highest weight of the representation, so that r,r, equals n( n + 1) 
times the identity N x N matrix. So the operator &A is 

d2 
dz 

&A = 7- n(n + l ) k 2  snz z + M 
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where M = M ( k )  is a constant matrix (it depends on k, but not on z ) :  
M (  k)  = t i  + k2t:. ( 9 )  

Thus the equation LAf = 0 consists of N copies of LamC’s equation ( l ) ,  with values 
of h equal to the eigenvalues of M ( k ) .  The doubly periodic solutions we are after 
are, in fact, solutions of the Dirac equation A F  = 0. 

Note that the matrix M depends on the choice of t3 and t 2 ;  however, its spectrum 
depends only on the numbers n and k. 

Consider first the simplest integer representation, corresponding to n = 1. The tj 
are given by 

1 
t -- ]-a 

The matrix M (  k)  is 

Y A Y ]  t - -  1 
2-a 

0 1 0  

1 + f k 2  0 - f k 2  

-ikz 0 l + f k 2  
M ( k ) = [  0 k2  0 ] 

-i 
0 -i 0 

A : :I. 
0 0 -1 

the eigenvalues of which are 1, k2, 1 + k2. The matrix T appearing in the operator A 
involves the tensor product of the rJ and the Pauli matrices uJ, and is therefore a 6 x 6 
matrix. It acts on a 6-vector E Let us write F as a pair of 3-vectors rl, and cp. Then 
A F  = 0 becomes 

4’ + T3$ + ( TI - i T 2 )  cp = 0 

cp‘-  T3cp + ( T,  + iT2)$ = 0. 
(11) 

Let ( $ ] ,  &, 4-1) denote the components of $, and similarly for cp. If we use the 
expressions (6) for T, then (11) becomes 

f i $ b = i k  exp(-i am z)cp, -ik exp(i am z)cp-, 

AcpI = i f i ( d n z ) c p , + i k e x p ( - i a m  z)rL0 

f i c p ’ ,  = -id!(dn Z ) ( O - ~  - ik  exp(i am z ) &  

together with the same equations with cp, replaced by 
(Here exp(i am z )  = cn z + i sn z.) So the 6-vector equation AF = 0 decouples into two 
identical sets of three equations each. 

The general solution of equations (12) depends on three parameters and involves 
transcendental Lami  functions. But it is easy to exhibit a doubly periodic solution: 

t,bo by cpo, and q, by 

k k 
c p - I  = -- exp(i am z ) .  (13) 2 a  

c p I  = -- exp(-i am z )  2 J z  
$o=dn z 

These functions correspond to the n = 1 Lame polynomials. Indeed, the 3-vector 
f =  column ( c p , ,  &, 

(14) 
and  if we diagonalise the matrix M ,  then the components of the transformed f will be 
the three n = 1 Lami  polynomials, corresponding to the three characteristic values 
h = 1, k2, 1 + k’. 

is clearly a solution of 

f”- n(n + l )k2(sn2  z ) f +  Mf= 0 
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It is easy to extend the above to n = 2 , 3 , 4 , .  . . . The equations A F  = 0 decouple 
into two copies of a set of N = 2n + 1 equations and this set has a solution of the form 

f =  column(cp,,, 

( P k  = (Yk exp( -ik am z)  

( ~ ~ - 2 , .  . . , +I-nr cp-,) 

where 
+k = (Yk  dn z exp(-ik am z).  

Here a,,, a n - l ,  . . . , a-,, are non-zero constants: it is straightforward to compute their 
values, which are determined uniquely u p  to an  overall constant of proportionality, 
in terms of the entries in the matrices f, generating the N-dimensional representation. 

So as before,fsatisfies (14). The N components off are clearly linearly independent 
over @, so that, after diagonalising M, we obtain N independent solutions of the Lam6 
equation, one for each eigenvalue h of M. One knows (Ince 1941) that no two Lam6 
polynomials can belong to the same value of h ;  so the eigenvalues of M are all distinct 
and give all of the N characteristic values h. 

The case of half-integer (i.e. even-dimensional) representations of so(3) is slightly 
different. For example, in the case n =:, the matrix M ( k )  has two equal eigenvalues 
a( 1 + k 2 )  and the general solution of AF = 0 can be written down explicitly: each 
component of F is a linear combination of the two functions (dn z + cn z)”’ and 
(dn  z -cn z ) ~ ’ ~ .  These are the two algebraic Lame functions corresponding to n = i. 

Let us examine what happens in the limit k = 0 .  If we first make the affine 
transformation z-iz + K + i K ’  and then let k tend to zero, the equation AAf = 0 
becomes 

(15) 
The potential appearing in (15) is, of course, well known as a reflectionless potential, 
provided n is an integer (Lamb 1980,s 2.5). The non-zero eigenvalues of t :  correspond 
to the bound states of the Schrodinger equation (15). The solution (13) of A F = O  
becomes 

f ” +  [ n ( n  + 1) sech’ z - r:]f = 0. 

(9, , +o, ~ p - ~ )  = (i2-’/* sech z, -tanh z, 0). 

So ‘p, is the normalisable solution of (15) corresponding to the eigenvalue 1, whereas 
Go, corresponding to the eigenvalue 0, is not normalisable. 

Finally, one  can ask whether it is possible to generalise the above observations, so 
as to obtain more general finite-gap and reflectionless potentials, together with their 
associated eigenvalues. The first guess would be to use a Lie algebra g other than 
so(3), so that T, takes values in a representation of g. One knows that, for any g, the 
g-Nahm equations are completely integrable and can be solved in terms of Abelian 
functions and  finite-gap potentials can also be expressed in terms of Abelian functions, 
so at  first sight it seems promising. However, it does not work, as the following 
argument shows. 

Let G,, (Y = 1 , 2 , .  . . , m, be a basis for g. So we can write T, = TP(z)G,. We want 

(16) Tp Tf = [ ( z ) g U p  + M U P  
where g a p  is the Killing metric and  M a p  is constant. For then we would have 

T,T, = [(z)C + M 
where M is a constant matrix and  C (the Casimir element) is a scalar (compare 
equation ( 7 ) ) .  However, the left-hand side of (16), thought of as a n  m x m matrix, 
has rank S3 .  So the right-hand side cannot have the required form, unless either 6 is 
a constant or  m = 3. 



The Nahm equations 2683 

It remains a possibility that some generalisation of the Nahm-Dirac operator A 
could provide the general finite-gap potentials and their eigenvalues. This is worth 
investigating further. 
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